Khóa luận Nghiên cứu các thuật toán nhận dạng cảm xúc khuôn mặt trên ảnh 2D
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
Đinh Xuân Nhất
NGHIÊN CỨU CÁC THUẬT TOÁN NHẬN DẠNG
CẢM XÚC KHUÔN MẶT TRÊN ẢNH 2D
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công nghệ thông tin
HÀ NỘI – 2010
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
Đinh Xuân Nhất
NGHIÊN CỨU CÁC THUẬT TOÁN NHẬN DẠNG
CẢM XÚC KHUÔN MẶT TRÊN ẢNH 2D
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công nghệ thông tin
Cán bộ hướng dẫn: PGS TS. Bùi Thế Duy
HÀ NỘI – 2010
LỜI CẢM ƠN
Lời đầu tiên em xin bày tỏ lòng biết ơn tới các thầy, cô giáo trong trường Đại
học Công nghệ - Đại học Quốc gia Hà Nội. Các thầy cô đã dạy bảo, chỉ dẫn chúng em
và luôn tạo điều kiện tốt nhất cho chúng em học tập trong suốt quá trình học đại học
đặc biệt là trong thời gian làm khoá luận tốt nghiệp.
Em xin bày tỏ lòng biết ơn sâu sắc tới PGS TS. Bùi Thế Duy, thầy đã hướng
dẫn em tận tình trong học kỳ vừa qua.
Tôi cũng xin cảm ơn những người bạn của mình, các bạn đã luôn ở bên tôi,
giúp đỡ và cho tôi những ý kiến đóng góp quý báu trong học tập cũng như trong cuộc
sống.
Cuối cùng con xin gửi tới bố mẹ và toàn thể gia đình lòng biết ơn và tình cảm
yêu thương nhất. Con xin dành tặng bố mẹ kết quả mà con đã đạt được trong suốt bốn
năm học đại học. Con cám ơn bố mẹ nhiều.
Hà nội, ngày 25/05/2010
Đinh Xuân Nhất
i
TÓM TẮT
Bài toàn nhận dạng cảm xúc đã bắt đầu được nghiên cứu từ những năm 1970
nhưng kết quả đạt được vẫn còn nhiều hạn chế. Hiện nay vấn đế này vẫn đang được rất
nhiều người quan tâm bởi tính hấp dẫn cùng những vấn đề phức tạp của nó. Mục tiêu
của khóa luận này là nghiên cứu và đánh giá về các phương pháp nhận dạng mặt người
trong việc nhận dạng ra 5 cảm xúc cơ bản: Vui, buồn, ghê tởm, dận giữ và tự nhiên
trên ảnh tĩnh, chính diện.
Từ khóa: Facial Expression Recognition, Principal Component Analysis,
Neural Network, Decision Tree, Weka…
ii
MỤC LỤC
LỜI CẢM ƠN ...................................................................................................................i
TÓM TẮT ....................................................................................................................... ii
DANH MỤC HÌNH ẢNH ................................................................................................v
Chương 1. GIỚI THIỆU ...............................................................................................1
1.1 Cấu trúc của khóa luận .....................................................................................1
1.2 Nhận dạng cảm xúc khuôn mặt và ứng dụng ....................................................1
1.3 Một số phương pháp nhận dạng cảm xúc khuôn mặt ........................................2
1.3.1 Các phương pháp dựa trên đặc trưng của ảnh....................................2
1.3.2 Phương pháp sử dụng Action Units ..................................................3
1.3.3 Phương pháp dùng mô hình AAM kết hợp tương quan điểm ............4
1.3.4 Mô hình tổng quan............................................................................4
1.4 Các thách thức trong vấn đề nhận dạng cảm xúc khuôn mặt.............................5
1.5 Các vấn đề liên quan ........................................................................................5
Chương 2. MỘT SỐ LÝ THUYẾT CƠ BẢN ...............................................................7
2.1 Giới thiệu về mạng nơron.................................................................................7
2.1.1 Mạng Perceptron nhiều tầng (MPL – Multi Perceptron Layer)..........8
2.1.2 Ánh xạ mạng lan truyền tiến.............................................................8
2.1.3 Hàm sigmoid ..................................................................................11
2.1.4 Thuật toán lan truyền ngược ...........................................................12
2.2 Giới thiệu về PCA..........................................................................................19
2.2.1 Một số khái niệm toán học..............................................................19
2.2.2 Ma trận đại số.................................................................................22
2.2.3 Eigenvector (Vectơ riêng)...............................................................23
2.2.4 Eigenvalue (Giá trị riêng) ...............................................................23
2.2.5 Phân tích thành phần chính (PCA)..................................................24
Chương 3. CÁC PHƯƠNG PHÁP NHẬN DẠNG CẢM XÚC KHUÔN MẶT..........25
iii
3.1 Nhận dạng cảm xúc dựa trên PCA truyền thống.............................................25
3.1.1 Trích chọn đặc trưng.......................................................................25
3.1.2 Quá trình nhận dạng .......................................................................26
3.2 Nhận dạng cảm xúc dựa trên PCA kết hợp các thuật toán học ........................27
3.2.1 Mạng nơron....................................................................................27
3.2.2 Cây quyết định ...............................................................................27
Chương 4. THỰC NGHIỆM.......................................................................................29
4.1 Môi trường thực nghiệm.................................................................................29
4.2 Dữ liệu đầu vào..............................................................................................29
4.3 Khảo sát và đánh giá ......................................................................................29
4.3.1 Phương pháp PCA truyền thống .....................................................30
4.3.2 Phương pháp sử dụng mạng nơron..................................................30
4.3.3 Phương pháp sử dụng cây quyết định..............................................31
4.4 Tổng kết.........................................................................................................32
Chương 5. KẾT LUẬN...............................................................................................33
PHỤ LỤC - MỘT SỐ THUẬT NGỮ ANH – VIỆT .......................................................34
TÀI LIỆU THAM KHẢO...............................................................................................35
iv
DANH MỤC HÌNH ẢNH
Hình 1: Mô hình nhận dạng cảm xúc.................................................................4
Hình 2: Mô hình mạng lan truyền tiến...............................................................8
Hình 3: Đồ thị hàm truyền sigmoid .................................................................11
Hình 4: Lan truyền ngược ...............................................................................14
Hình 5: Minh họa việc tính δj cho việc tính nút ẩn j.........................................17
Hình 6: Ví dụ về 1 non-eigenvector và 1 eigenvector ......................................22
Hình 7: Ví dụ về 1 eigenvector có tỉ lệ khác vẫn 1 là eigenvector....................23
Hình 8: Ví dụ về trích chọn đặc trưng bằng PCA ............................................25
Hình 9: Mô hình mạng nơron..........................................................................27
Hình 10: Cây quyết định .................................................................................28
v
Chương 1. GIỚI THIỆU
1.1 Cấu trúc của khóa luận
Với nội dung trình bày những lý thuyết cơ bản và cách áp dụng vào bài toán nhận
dạng cảm xúc khuôn mặt, khóa luận được tổ chức theo cấu trúc như sau:
Chương 1: Giới thiệu
Giới thiệu sơ lược về các phương pháp nhận dạng cảm xúc, ứng dụng của
nó trong cuộc sống hàng ngày, giới thiệu các phương pháp được sử dụng trong
khóa luận này, mục tiêu và cấu trúc của khóa luận.
Chương 2: Một số lý thuyết cơ bản
Chương hai đi vào giới thiệu tổng quan về các lý thuyết cơ bản. Những kiến
thức cơ bản này là tiền đề để người đọc hiểu được cách áp dụng vào bài toán
nhận dạng cảm xúc và lớp các bài toán nhận dạng nói chung.
Chương 3: Các phương pháp nhận dạng cảm xúc
Chương này đi vào giới thiệu một số phương pháp nhận dạng cảm xúc sử
dụng các lý thuyết cơ bản đã nêu ở chương hai
Chương 4: Thực nghiệm
Chương này phân tích về ưu, nhược điểm và so sánh, đánh giá giữa các
phương pháp.
Chương 5: Kết luận
Chương này tổng kết lại những gì đã đạt được và chưa đạt được. Từ đó nêu
lên những hướng nghiên cứu và phát triển tiếp theo.
1.2 Nhận dạng cảm xúc khuôn mặt và ứng dụng
Trong vài năm gần đây, cùng với sự phát triển về khoa học và công nghệ, tương
tác người máy đã trở thành một lĩnh vực nổi bật nhằm cung cấp cho con người khả
năng phục vụ của máy móc. Điều này bắt nguồn từ khả năng máy móc có thể tương
tác được với con người. Máy móc cần các kỹ năng để trao đổi thông tin với con người
và 1 trong những kỹ năng đó là khả năng hiểu được cảm xúc. Cách tốt nhất để một
người biểu thị cảm xúc là qua khuôn mặt. Bài toàn nhận dạng cảm xúc khuôn mặt đã
1
được bắt đầu nghiên cứu từ những năm 1970 nhưng kết quả đạt được đến nay vẫn còn
nhiều hạn chế.
Ứng dụng của nhận dạng cảm xúc trong cuộc sống hàng ngày là rất lớn, các hệ
thống phát hiện trạng thái buồn ngủ dựa vào cảm xúc trên khuôn mặt được phát triển
để cảnh báo cho người lái xe khi thấy dấu hiệu buồn ngủ, mệt mỏi. Các hệ thống kiểm
tra tính đúng đắn của thông tin, các phần mềm điều khiển dựa vào cảm xúc, các thiết
bị hỗ trợ người tàn tật,...
Mục tiêu của khóa luận này là nghiên cứu 1 số phương pháp nhận dạng cảm xúc
khuôn mặt dựa trên ảnh hai chiều và trực diện
1.3 Một số phương pháp nhận dạng cảm xúc khuôn mặt
Có nhiều phương pháp đã được nghiên cứu để giải quết bài toán này, điển hình
là một số phương pháp sau: Sử dụng các đơn vị vận động trên khuôn mặt (Action units
– AU), sử dụng PCA, AAM kết hợp tương quan điểm, sử dụng các phương pháp
học,… Mỗi phương pháp đều có ưu và nhược điểm riêng. Đối với các phương pháp sử
dụng PCA kết hợp mạng nơron, cần một tập dữ liệu chuẩn để huấn luyện. Việc xây
dựng các tập huấn luyện này cũng tương đối khó khăn và tốn kém vì cần nhiều người
làm mẫu, những người này phải có khả năng diễn đạt cảm xúc tốt, ngoài ra còn cần sự
đánh giá của các chuyên gia tâm lý. Hiện nay có một số tập huấn luyện chuẩn thường
được dùng như JAFFE (Japanese Female Facial Expression) hay Cohn-kanade.
1.3.1 Các phương pháp dựa trên đặc trưng của ảnh
Các kỹ thuật sử dụng trong phương pháp này là phân tích thành phần chính
PCA, sau đó huấn luyện bằng các thuật toán học. PCA được Karl Pearson tạo ra năm
1901. Đến những năm 80, Sirovich và Kirby đã phát triển kỹ thuật này để thể hiện
khuôn mặt một cách hiệu quả. Đưa ra sự giống nhau giữa nhiều hình ảnh khuôn mặt
khác nhau, kĩ thuật này tìm ra những thành phần cơ bản của sự phân bố trên khuôn
mặt, thể hiện bằng các eigenvectors. Từng khuôn mặt trong một tập hợp các khuôn
mặt sau đó có thể tính xấp xỉ bằng sự kết hợp tuyến tính giữa những eigenvector lớn
nhất, được biết tới như eigenfaces.
2
1.3.2 Phương pháp sử dụng Action Units
Phương pháp này nhận dạng cảm xúc dựa trên các đơn vị chuyển động của
khuôn mặt (AU). Có tất cả 64 AU, mỗi AU là sự kết hợp của một số các cơ trên khuôn
mặt. Cảm xúc được nhận dạng bằng cách phát hiện tại một thời điểm có bao nhiêu AU
xuất hiện trên khuôn mặt và với các AU xuất hiện cùng nhau tướng ứng với 1 cảm
xúc.
3
1.3.3 Phương pháp dùng mô hình AAM kết hợp tương quan điểm
Phương pháp này sử dụng mô hình AAM để phát hiện khuôn mặt. Sau đó dựa
vào tỷ lệ giữa 2 mắt, lông mày, miệng, mũi, … để nhận dạng cảm xúc. Khó khăn của
phương pháp này là việc xác định ngưỡng tỉ lệ để xác định cảm xúc. Tuy nhiên
phương pháp này có ưu điểm về tốc độ, dó đó thường đươc ứng dụng trong nhận dạng
cảm xúc thời gian thực.
1.3.4 Mô hình tổng quan
Ảnh ứng viên
Ảnh đầu vào
Phát hiện
Tiền xử lý ảnh
khuôn mặt
Ảnh đã
tiền xử lý
Cảm xúc
Nhận dạng cảm xúc
Hình 1: Mô hình nhận dạng cảm xúc
4
1.4 Các thách thức trong vấn đề nhận dạng cảm xúc khuôn mặt
Xác định cảm xúc khuôn mặt là một bài toán khó bởi vì con người ngoài 7 cảm
xúc cơ bản, còn rất nhiều cảm xúc đa dạng khác. Hơn nữa vì nhận dạng cảm xúc dựa
trên các đặc điểm của khuôn mặt nên thực tế không thể biết được cảm xúc đó là đúng
hay không. Về phương pháp nhận dạng, cũng gặp khó khăn khi ảnh khuôn mặt không
chính diện, quá bé, hay trong điều kiện ánh sáng không tốt.
1.5 Các vấn đề liên quan
Bên cạnh việc nhận dạng cảm xúc trong không gian 2D còn có một số vấn đề
liên quan mật thiết.
Nhận dạng cảm xúc trong không gian 3D[10]: Đây là vấn đề rất gần gũi với
nhận dạng cảm xúc trong không gian 2D, tuy nhiên trong không gian 3D chúng ta có
nhiều thông tin hơn, ngoài màu sắc, đặc trưng còn có hình dáng của khuôn mặt,…
5
Nhận dạng cảm xúc trong video: Vấn đề này dễ dàng hơn vì chúng ta có rất
nhiều thông tin về khuôn mặt dựa vào các khung hình liên tiếp, và vấn đề này cũng
thực tiễn hơn nhiều so với nhận dạng cảm xúc trong không gian 2D.
6
Chương 2. MỘT SỐ LÝ THUYẾT CƠ BẢN
2.1 Giới thiệu về mạng nơron[6]
Có thể nói, hiện nay, không có một định nghĩa chính thức nào cho mạng neural.
Tuy nhiên phần lớn mọi người đều đồng tình rằng mạng neural là một mạng bao gồm
rất nhiều bộ xử lý đơn giản (gọi là các unit), mỗi unit có vùng nhớ riêng của mình. Các
unit được kết nối với nhau thông qua kênh thông tin (gọi là các connection), thường
mang dữ liệu số (không phải là các ký hiệu), và được mã hóa theo một cách nào đấy.
Các unit chỉ xử lý trên bộ dữ liệu của riêng nó và trên các đầu vào được đưa tới thông
qua các liên kết. hạn chế của các phép xử lý cục bộ này là nó thường ở trạng thái nghỉ
trong suốt quá trình học.
Một số mạng neural là các mô hình mạng neural sinh học, một số thì không,
nhưng từ trước tới nay, thì tất cả các lĩnh vực của mạng neural đều được nghiên cứu
xây dựng xuất phát từ các yêu cầu xây dựng các hệ thống nhận tạo rất phức tạp, hay
các phép xử lý “thông minh”, và những gì tuơng tự như bộ não con người.
Hầu hết các mạng neural đều có một vài quy tắc học nào đó mà thông qua đó
các trọng số của các liên két được điều chỉnh dựa trên dữ liệu. Nói cách khác, các
mạng neural “học” và các ví dụ và dựa trên các dữ liệu đó thì nó có khả năng tổng quát
tri thức và đưa ra “nhận thức của mình”.
Mạng neural là mô hình mạng ứng dụng các phương pháp xử lý song song và
các thành phần mạng xử lý hoàn toàn đợc lập với nhau. Một vài nguời xem khả năng
xử lý song song số lượng lớn và tính liên kết cao của mạng neural là các tính chất đặc
trưugn của nó. Tuy nhiên với những yêu cầu như thế thì lại không có những mô hình
đơn giản, ví dụ như mô hình hồi quy tuyến tính đơn giản, một mô hình được ứng dụng
rất rộng rãi của mạng neural.
Mạng neural có thể được áp dụng trong mọi trường hợp khi tồn tại một mối liên
hệ giữa các biến độc lập (inputs) và các biến phụ thuộc (outputs), thậm chí là ngay cả
khi mối quan hệ đó phứuc tạp. Một số lĩnh vực mà mạng neural đã được áp dụng thành
công như dự đoán triệu chứng y học, dự đoán thị trường chứng khoán, đánh giá độ tin
cậy tài chính, điều chỉnh điều kiện của cơ cấu máy móc.
7
2.1.1 Mạng Perceptron nhiều tầng (MPL – Multi Perceptron Layer)
MPL là một loại mạng lan truyền tiến được huấn luyện theo kiểu học có giám
sát. Mạng là một cấu trúc gồm nhiều lớp trọng số. Ở đây ta chỉ xét đến loại mạng lan
truyền khả vi. Đây là loại mạng có thể áp dụng phương pháp tính toán khá hiệu quả và
mạnh gọi là lan truyền ngược lỗi , để xác định đạo hàm hàm lỗi theo các trọng số và độ
dốc trong mạng. Đây là một tính chất rất quan trọng của những mạng kiểu này bởi
những đạo hàm này đóng vai trò trung tâm trong các giải thuật học của các mạng đa
lớp. Vấn đề lan truyền ngược sẽ được ta xét tới trong một phần riêng sau này.
2.1.2 Ánh xạ mạng lan truyền tiến
Trong phần này ta sẽ nghiên cứu mô hình mạng neural lan truyền tiến như là
một khung tổng quát đại diện cho các hàm ánh xạ phi tuyến giữa tập các biến đầu vào
và tập các biến đầu ra.
2.1.2.1 Mạng phân lớp
Các mạng đơn lớp được xây dựng dựa trên sự kết hợp tuyến tính các biến đầu
vào được chuyển đổi bởi một hàm truyền phi tuyến.
Ta có thể xây dựng được các hàm tổng quát hơn bằng cách nghiên cứu những
mô hình mạng có các lớp các nút là liên tiếp, với các kết nối từ tất cả các nút thuộc
một lớp tới tất cả các nút thuộc lớp kế tiếp, và không cho phép bất kỳ một loại kết nối
nào khác. Những mạng phân lớp như thế này có thể dễ phân tích hơn các cấu trúc tổng
quát khác, và cũng dễ được mô phỏng bởi phần mềm hơn.
Hình 2: Mô hình mạng lan truyền tiến
8
Các nút không phải là các nút nhập và nút xuất được gọi là các nút ẩn. Trong
mô hình chúng ta nghiên cứu ở đây, có d nút nhập, M nút ẩn và c nút xuất.
Kết quả của nút ẩn thứ j được tính như sau:
d
(1)
(1)
j0
(I.26)
a
w x w
ji i
j
i1
Trong đó là trọng số của lớp đầu tiên, từ nút nhập i đến nút ẩn j, và là trọng
ngưỡng của nút ẩn j.
Giả sử đặt một biến cố định x0 = 1. Từ đó công thức (I.26) có thể được viết lại:
d
(1)
a
w
x
(I.27)
j
ji i
i0
Sau đó độ hoạt động zk của nút ẩn j được tính toán bằng cách chuyển đổi tổng
tuyến tính (I.27) sử dụng hàm truyền g(.), tức là: zk = g(aj) (I.28)
Kết xuất của mạng được tính bằng cách chuyển đổi độ hoạt động của các nút ẩn
sử dụng một lớp các nút thứ 2. Với mỗi nút xuất k, ta có:
M
(2)
kj
(2)
k0
a
w
z w
(I.29)
(I.30)
j
k
i1
Đặt z0 =1 ta có:
M
(2)
kj
a
w
z
j
k
i0
Sau đó giá trị này được cho qua hàm truyền phi tuyến cho ta kết xuất đầu ra
~
của nút xuất k: yk g
ak
(I.31)
Ở đây ta sử dụng kí hiệu để biểu diễn hàm truyền của các nút xuất nhằm chỉ ra
rằng hàm này có thể không trùng với hàm đã được sử dụng trong lớp ẩn.
Kết hợp (I.27), (I.28), (I.30), (I.31) ta có công thức chung cho mô hình mạng
trong hình trên:
9
M
d
(2)
kj
(1)
w x
ji
~
y g
k
w
g
(I.32)
i
j0
i0
2.1.2.2 Kiến trúc mạng tổng quát
Ta có thể xây dựng được những ánh xạ mạng tổng quát hơn bằng cách nghiên
cứu những sơ đồ mạng phức tạp hơn. Tuy nhiên ở đây thì ta chỉ giới hạn nghiên cứu
trong phạm vi các mạng lan truyền tiến.
Mạng lan truyền tiến là mạng không có một kết nối quay lui nào trong mạng.
Theo Bishop (1995): OVề mặt tổng quát, một mạng được gọi là lan truyền tiến
nếu nó có thể gán các số liên tục cho tất cả các nút nhập, tất cả các nút ẩn và nút xuất
sao cho mỗi nút chỉ có thể nhận được các kết nối từ các nút nhập hoặc các nút được
gán số bé hơn.Õ
Với những mạng có tính chất như thế, kết xuất của mạng là các hàm quyết định
của các đầu vào, và vì thế toàn bộ mạng được gọi là một ánh xạ hàm phi tuyến đa
biến.
Kết xuất của nút k tính được như sau:
z g w z
(I.33)
j
k
kj
j
trong đó g(.) là một hàm truyền phi tuyến, và j thuộc tập tất cả các nút nhập và
các nút gửi kết nối tới nút k (Tham số trọng ngưỡng cũng đã được bao hàm ở trong
tổng này).
Với một tập cho trước các giá trị đầu vào, áp dụng liên tục công thức (I.33) sẽ
cho phép các kích hoạt của tất cả các nút trong mạng được ước lượng, bao gồm cả các
kích hoạt của các nút xuất. Quá trình này được gọi là lan truyền tiến các tín hiệu qua
mạng.
Nếu như các hàm truyền của tất cả các nút ẩn trong mạng là tuyến tính, thì với
những mạng như thế ta luôn luôn tìm được một mô hình mạng tương đương mà không
có một nút ẩn nào. Những mạng này được gọi là mạng tuyến tính đa lớp và vì thế
10
không được đi sâu nghiên cứu, mà người ta chỉ chủ yếu nghiên cứu các mạng đa lớp
với các hàm truyền của các nút ẩn là phi tuyến.
2.1.3 Hàm sigmoid
Bây giờ chúng ta sẽ xem xét hàm truyền logistic dạng S, trong đó các đầu ra
của nó nằm trong khoảng (0,1), có phương trình như sau:
1
g
a
(I.34)
1 exp a
Hình vẽ dưới đây biểu diễn một hàm truyền sigmoid cho các nút trong mạng.
Đây là một hàm mũ có một đặc tính vô cùng quan trọng vì : khi x chạy từ vô cùng lớn
đến vô cùng bé thì f(x) luôn chạy trong khoảng từ 0 đến 1. Giải thuật học ở đây sẽ điều
chỉnh trọng số của các kết nối giữa các nút để hàm này ánh xạ giá trị của x sang dạng
nhị phân, thông thường:
f(x) > 0.9 : f(x) = 1
f(x) < 0.1 : f(x) = 0.
Hình 3: Đồ thị hàm truyền sigmoid
Trong phần này chúng ta sẽ xem xét các mạng neural với nút xuất tuyến tính.
Tuy nhiên điều này cũng chẳng hạn chế lớp các hàm mà mạng có thể xấp xỉ hoá. Việc
sử dụng các hàm sigmoid tại các đầu ra sẽ giới hạn phạm vi có thể xảy ra của các nút
11
xuất thành phạm vi có thể đạt tới được của hàm sigmoid (giá trị kết xuất là từ 0 tới 1),
và trong một số trường hợp thì điều này có thể là không mong muốn. Thậm chí ngay
cả khi giá trị xuất mong muốn là nằm trong giới hạn của hàm sigmoid thì chúng ta vẫn
phải chú ý rằng hàm sigmoid g(.) là một hàm đơn điệu tăng, do đó nó có thể lấy nghịch
đảo được. Do vậy một giá trị xuất y mong muốn đối với mạng có nút xuất thuộc dạng
sigmoid thì tương đương với một giá trị xuất g-1(y) đối với mạng có nút xuất tuyến
tính.
Một nút ẩn thuộc dạng sigmoid có thể xấp xỉ một nút ẩn tuyến tính bất kì một
cách chính xác. Công việc này đạt được bằng cách thiết kế cho tất cả các trọng số các
cung đầu vào của nút, cũng như các trọng ngưỡng, sao cho rất nhỏ để mà tổng của các
giá trị nhập phải nằm trên phần tuyến tính của đường cong sigmoid, gần đúng với
đường thẳng nguyên thuỷ. Trọng số trên cung xuất từ một nút đến tầng chứa các nút kế
tiếp có thể tạo ra tương đối lớn để tái tỉ lệ với độ hoạt động (và với trọng ngưỡng để có
được bước dịch chuyển phù hợp nếu cần thiết). Tương tự, một nút ẩn dạng sigmoid có
thể được tạo ra nhằm xấp xỉ một hàm bậc thang (step) bằng vịêc đặt giá trị cho các
trọng số và trọng ngưỡng rất lớn.
Bất kì một ánh xạ hàm liên tục nào đều có thể được trình bày với độ chính xác
tuỳ ý bởi một mạng neural hai lớp trọng số sử dụng các nút ẩn dạng sigmoid (Bishop,
1995).
Do đó chúng ta biết được rằng những mạng neural với nhiều tầng nút xử lý
cũng có khả năng xấp xỉ hoá bởi vì chúng đã chứa đựng trong nó mạng neural hai tầng
như một trường hợp đặc biệt. Điều này cho phép các tầng còn lại được sắp xếp để thực
hiện những biến đổi tuyến tính như đã thảo luận ở trên, và sự biến đổi đồng nhất chính
là một trường hợp dặc biệt của một phép biến đổi tuyến tính (biết rằng có đủ số nút ẩn
để không có sự giảm bớt về chiều xảy ra).
2.1.4 Thuật toán lan truyền ngược
Bây giờ chúng ta sẽ tập trung nghiên cứu một kĩ thuật rất phổ biến của mạng
neural nhiều tầng. Chúng ta sẽ xem xét cách mà một mạng học một ánh xạ từ một tập
dữ liệu cho trước.
Chúng ta đã biết việc học dựa trên định nghĩa của hàm lỗi, hàm lỗi này sau đó
sẽ được tối thiểu hoá dựa vào các trọng số và các trọng ngưỡng trong mạng.
12
Trước tiên ta sẽ xem xét trường hợp mạng sử dụng hàm ngưỡng. Vấn đề cần
bàn ở đây chính là cách để khởi tạo các trọng số cho mạng như thế nào. Công việc này
thường được gọi là ‘credit assignment problem’. nếu một nút đầu ra tạo ra một đáp số
sai lệch thì chúng ta phải quyết định xem liệu nút ẩn nào phải chịu trách nhiệm cho sự
sai lệch đó, cũng chính là việc quyết định trọng số nào cần phải điều chỉnh và điều
chỉnh là bao nhiêu.
Để giải quyết vấn đề gán trọng số này, chúng ta hãy xem xét một mạng với các
hàm truyền phân biệt ,do đó giá trị tổng trọng của các nút xuất sẽ trở thành một hàm
phân biệt của các biến nhập và của trọng số và trọng ngưỡng. Nếu ta coi hàm lỗi, ví dụ
có dạng sai số trung bình bình phương, là một hàm riêng biệt cho các giá trị xuất của
mạng thì bản thân nó cũng chính là một hàm phân biệt của các trọng số.
Do đó chúng ta có thể tính toán được đạo hàm hàm lỗi theo các trọng số, và giá
trị đạo hàm này lại có thể dùng để làm cực tiểu hoá hàm lỗi bằng cách sử dụng phương
pháp giảm gradient (gradient descent) hoặc các phương pháp tối ưu hoá khác.
Giải thuật ước lượng đạo hàm hàm lỗi được biết đến với tên gọi lan truyền
ngược, nó tương đương với việc lan truyền ngược lỗi trong mạng. Kĩ thuật về lan
truyền ngược được biết đến rất rộng rãi và chi tiết qua các bài báo cũng như các cuốn
sách của Rumelhart, Hinton và Williams (1986). Tuy nhiên gần đây một số ý tưởng
tương tự cũng được một số nhà ngiên cứu phát triển bao gồm Werbos (1974) và Parker
(1985).
Cần nói thêm rằng giải thuật lan truyền ngược được sử dụng trong mạng neural
có ý nghĩa rất lớn. Ví dụ như, kiến trúc của mạng perceptron nhiều tầng cũng thường
được gọi là mạng lan truyền ngược. Khái niệm lan truyền ngược cũng thường được sử
dụng để mô tả quá trình huấn luyện của mạng perceptron nhiều tầng sử dụng phương
pháp gradient descent áp dụng trên hàm lỗi dạng sai số trung bình bình phương. Để
làm rõ hơn về thuật ngữ này chúng ta cần xem xét quá trình luyện mạng một cách kĩ
càng. Phần lớn các giải thuật luyện mạng đều liên quan đến một thủ tục được lặp đi lặp
lại nhằm làm tối thiểu hàm lỗi, bằng cách điều chỉnh trọng số trong một chuỗi các
bước.
Tại mối bước như vậy, chúng ta có thể chia thành hai bước phân biệt.
Tại bước thứ nhất, cần phải tính đạo hàm hàm lỗi theo các trọng số. Chúng ta
đã biết rằng một đóng góp rất quan trọng của kĩ thuật lan truyền ngược đó là việc cung
cấp một phương pháp hết sức hiệu quả về mặt tính toán trong việc đánh giá các đạo
13
hàm. Vì tại bước này lỗi sẽ được lan truyền ngược trở lại mạng nên chúng ta sẽ sử
dụng khái niệm lan truyền ngược để đặc trưng riêng cho việc đánh giá đạo hàm này.
Tại bước thứ hai, các đạo hàm sẽ được sử dụng trong việc tính toán sự điều
chỉnh đối với trọng số. Và kĩ thuật đơn giản nhất được sử dụng ở đây là kĩ thuật
gradient descent, kĩ thuật này được Rumelhart et al. (1986) đưa ra lần đầu tiên.
Một điều hết sức quan trọng là phải nhận thức được rằng hai bước này là phân
biệt với nhau. Do đó, quá trình xử lý đầu tiên , được biết đến là quá trình lan truyền
ngược các lỗi vào trong mạng để đánh giá đạo hàm, có thể được áp dụng đối với rất
nhiều laọi mạng khác nhau chứ không chỉ đối với riêng mạng perceptron nhiều tầng.
Nó cũng có thể được áp dụng với các loại hàm lỗi khác chứ không chỉ là hàm tính sai
số bình phương cực tiểu, và để đánh giá các đạo hàm khác này có thể sử dụng các
phương pháp khác như phương pháp ma trận Jacobian và Hessian mà chúng ta sẽ xem
xét ở phần sau. Và cũng tương tự như vậy thì tại bước thứ hai, việc điều chỉnh trọng số
sử dụng các đạo hàm đã được tính trước đó có thể thực hiện với nhiều phương pháp tối
ưu hoá khác nhau, và rất nhiều trong số các phương pháp đó cho kết quả tốt hơn
phương pháp gradient descend.
2.1.4.1 Lan truyền ngược
Hình 4: Lan truyền ngược
Bây giờ chúng ta sẽ áp dụng giải thuật lan truyền ngược cho bất kì một mạng
neural có cấu hình lan truyền tiến tuỳ ý, sử dụng các hàm truyền phi tuyến tuỳ ý, và cả
14
hàm lỗi có dạng tuỳ ý. Để minh hoạ chúng ta sẽ dùng một mạng có cấu trúc một tầng
nút ẩn dạng sigmoid và hàm lỗi là hàm tính theo sai số trung bình bình phương.
Trong các mạng lan truyền tiến nói chung mỗi nút đều tình tổng trọng hoá các
đầu vào của nó theo công thức:
a w z
(I.35)
j
ji
i
i
Với zi là giá trị nhập hoặc là giá trị xuất của một nút có cung kết nối với nút j và
wji chính là trọng số của cung kết nối đó. Giá trị tổng này được tính trên tất cả các nút
có kết nối trực tiếp với nút j. Chúng ta biết rằng, trọng ngưỡng của nút cũng được đưa
vào trong tổng bằng cách tạo ra thêm một giá trị nhập cố định = 1. Tổng trong (I.35)
lại được biến đổi thông qua một hàm truyền phi tuyến g(.) để đưa ra được gía trị xuất
zi của nút j theo công thức:
zi g a j (I.36)
Bây giờ chúng ta cần phải xác định giá trị của các trọng số trong mạng thông
qua việc tối thiểu hoá hàm lỗi.
ở đây ta sẽ coi cá hàm lỗi được viết như một tổng của tất cả các lỗi tại mỗi mẫu
riêng biệt.Tổng này sẽ được tính trên tất cả các mẫu của tập huấn luyện
E En
(I.37)
n
Với n là nhãn của từng mẫu.
Chúng ta cũng giả định rằng lỗi En có thể được thể hiện như một hàm riêng của
các biến đầu ra, có nghĩa là :
En = En(yc, …, yc)
Mục đích của chúng ta ở đây chính là phải tìm ra một hàm nhằm để tính được
đạo hàm của hàm lỗi theo các trọng số và trọng ngưỡng của mạng.
15
Đối với từng mẫu, ta sẽ coi như đã cung cấp một vector nhập tương ứng là đầu
vàovà đã tính được các giá trị xuất của các nút ẩn cũng như nút xuất theo các công
thức (I.35), (I.36). Quá trình này thường được gọi là quá trình lan truyền tiến trong
mạng.
Bây giờ hãy xem xét việc tính đạo hàm của En theo cá trọng số wji. Giá trị xuất
của các nút sẽ phụ thuộc vào từng mẫu nhập n nào. Tuy nhiên để dễ nhìn, ta quy ước
sẽ bỏ qua việc viết kí tự n trên các biến nhập và xuất. Trước tiên ta cần chú ý rằng En
phụ thuộc vào trọng số wji thông qua tổng giá trị nhập ai của nút j. Do đó ta có thể đưa
ra công thức tính các đạo hàm riêng như sau:
En En
a j
wji aj wji
*
(I.38)
Từ (I.35) ta có:
a j
zi
wji
(I.39)
Như vậy suy ra:
n
E
z i
(I.40)
j
w
ji
E n
a j
Trong đó j
Từ công thức (I.40) ta thấy rằng để tính được đạo hàm chúng ta chỉ cần tính giá
trị cho mỗi nút ẩn và nút xuất trong mạng và sau đó áp dụng công thức (I.40).
Với các nút xuất thì việc tính δk là hết sức đơn giản.
16
Ta có:
E n
ak
E n
yk
'
(I.41)
k
g ak
En
.
Để tính ra (I.41) ta cần tìm ra công thức tính g’(a) và
y
Để tính được δ cho cá nút ẩn, ta cần sử dụng công thức tính đạo hàm riêng:
En
a j
En
ak
ak aj
j
(I.42)
k
Trong đó giá trị tổng được tính trên các nút k mà nút j kết nối đến. Việc sắp xếp
các nút cũng như các trọng số được minh hoạ trong Hình 6.
Hình 5: Minh họa việc tính δj cho việc tính nút ẩn j
Chú ý rằng các nút có nhãn k này có thể bao gồm cả nút nhập và nút xuất.
Bây giờ chúng ta có công thức lan truyền ngược như sau:
j g'
a j
w
(I.43)
kj
k
k
17
Công thức này nói lên rằng giá trị của δ đối với một nút ẩn có thể đựơc tính từ
việc lan truyền ngược các giá trị δ của các nút ẩn cao hơn trong mạng, như được minh
hoạ trong hình 5. Bởi vì chúng ta đã biết đựơc các giá trị δ của các nút xuất nên ta có
thể áp dụng (I.43) một cách đệ quy nhằm tính ra các giá trị δ cho tất cả các nút ẩn
trong mạng, mà không quan tâm đến cấu hình của nó.
Chúng ta có thể tổng kết lại giải thuật lan truyền ngược nhằm tính đạo hàm
hàm lỗi En theo các trọng số trong 4 bước:
Đưa vector nhập xn vào mạng và lan truyền tiến nó trong mạng sử dụng
và để tìm ra giá trị xuất cho tất cả các nút ẩn cũng như nút xuất.
Tính δ cho tất cả các nút xuất sử dụng công thức
Lan truyền ngựơc các d bằng công thức để thu được δ cho mỗi nút ẩn
trong mạng.
En
wji
áp dụng
j zi để tính các đạo hàm.
Đạo hàm của lỗi tổng E có thể thu được bằng cách lặp đi lặp lại các bước trên
đối với trừng mẫu trong tập huấn luyện và sau đó tính tổng trên tất cả các lỗi.
Trong quá trình tính đạo hàm trên chúng ta đã giả định rằng mỗi nút ẩn cũng
như xuất đếu có chung một hàm truyền g(.). Tuy nhiên điều này hoàn toàn có thể tính
được với trường hợp mỗi nút khác nhau đếu có các hàm truyền riêng, đơn giản bằng
cách đánh dấu dạng của hàm g(.) ứng với từng nút.
2.1.4.2 Hiệu quả của lan truyền ngược
Một trong những đặc tính quan trọng nhất của lan truyền ngược chính là ở khả
năng tính toàn hiệu quả của nó.
Đặt w là tổng số các trọng số và trọng ngưỡng. Do đó một phép tính hàm lỗi
(cho một mẫu nhập nào đó) cần O(w) thao tác với w đủ lớn. Điều này cho phép số
lượng trọng số có thể lớn hơn số lượng nút, trừ những mạng có quá ít kết nối. Do vậy,
hiệu quả của việc tính toán trong lan truyền ngược sẽ liên quan đến việc tính giá trị của
tổng trong công thức (I.35), còn việc tính toán các hàm truyền thì tổng phí khá nhỏ.
Mỗi lượt tính tổng trong (I.35) cần đến một phép nhân và một phép cộng, dẫn đến chi
phí tính toán toàn bộ sẽ bằng O(w).
Với tất cả w trọng số thì sẽ có w đạo hàm cần tính toán. Với mỗi lần tính đạo
hàm như vậy cần phải thực hiện tìm biểu thức hàm lỗi, xác định công thức tính đạo
18
hàm và sau đó tính toán chúng theo giải thuật lan truyền ngược, mỗi công việc đó sẽ
đòi hỏi O(w) thao tác. Như vậy toàn bộ quá trình tính toán tất cả các đạo hàm sẽ tỉ lệ
với O(w2). Giải thật lan truyền ngược cho phép các đạo hàm được tính trong O(w) thao
tác. Điều này cũng dẫn đến rằng cả hai pha lan truyền ngược và lan truyền tiến đều cần
O(w) thao tác, việc tính đạo hàm theo công thức (I.43) cũng cần O(w) thao tác.Như
vậy giải thuật lan truyền ngược đã làm giảm độ phức tạp tính toán từ O(w2) đến O(w)
đối với mỗi vector nhập. Vì quá trình luyện mạng, dù có sử dụng lan truyền ngược, có
thể cần rất nhiều thời gian, nên việc đạt được hiệu quả như vậy là hết sức quan
trọng.Với tổng số N mẫu luyện, số lượng các bước tính toán để đánh giá hàm lỗi trên
toàn bộ tập dữ liệu sẽ là N lần bước tính toán của một mẫu.
2.2 Giới thiệu về PCA
Phần này giúp người đọc hiểu được phép phân tích thành phần chính (PCA).
PCA là một kỹ thuật hữu ích trong các ứng dụng nhận dạng mặt và nén ảnh, và là một
kỹ thuật phổ biến để tìm mẫu trong các dữ liệu nhiều chiều[4].
Trước khi đi vào tìm hiểu PCA, tôi xin giới thiệu về các khái niệm toán học sẽ
được sử dụng trong PCA. Các khái niệm đó bao gồm: Độ lệch chuẩn (Standard
deviation), phương sai (variance), hiệp phương sai (covariance), vec tơ riêng
(eigenvector), giá trị riêng (eigenvalue).
2.2.1 Một số khái niệm toán học
2.2.1.1 Độ lệch chuẩn
Để hiểu độ lệch chuẩn, chúng ta cần một tập dữ liệu. Giả sử ta có tập
X = [1 2 4 6 12 15 25 45 68 67 65 98]
X là ký hiệu đại diện cho tập số, mỗi số riêng biệt được ký hiệu Xi (Ví dụ X3 =
4). Phần tử đầu tiên là X1 và n là số lượng phần tử của tập hợp. Khi đó trung bình của
mẫu có công thức:
Là ký hiệu trung bình của mẫu, tuy nhiên trung bình mẫu không nói lên
được nhiều điều ngoại trừ cho ta biết nó là một điểm giữa. Ví dụ với 2 tập dữ liệu
[0 8 12 20] và
[8 9 11 12]
19
có trung bình mẫu bằng nhau nhưng lại khá khác nhau. Sự khác biệt ở đây chính là
khoảng cách của dữ liệu. Và độ lệch chuẩn là đại lượng để đo khoảng cách này. Ta có
thể hiêu độ lệch chuẩn là khoảng cách trung bình từ trung bình mẫu đến các điểm của
dữ liệu. Ta có công thức:
Tập hợp 1
Tập hợp 2
Ta có thể dễ dàng nhận thấy tập dữ liệu 1 có độ lệch chuẩn lớn hơn có khoảng
cách lớn hơn tập dữ liệu 2.
20
2.2.1.2 Phương sai
Phương sai là một đại lượng khác dùng để đo khoảng cách của dữ liệu. Ta có
công thức:
Dễ thấy phương sai chính là bình phương độ lệch chuẩn.
2.2.1.3 Hiệp phương sai
Ta thấy rằng 2 đại lượng độ lệch chuẩn và phương sai chỉ sử dụng được trong 1
chiều. Trong thực tế dữ liệu có thể có rất nhiều chiều. Một ví dụ đơn giản ta có dữ liệu
về cân nặng và điểm số của toàn bộ sinh viên trong lớp K51-KHMT. Đối với dữ liệu
này, độ lệch chuẩn và phương sai chỉ tính được trên từng chiều riêng biệt và ta không
thấy được mối liên hệ giữa 2 chiều này.
Tương tự phương sai, hiệp phương sai là đại lượng đo sự biến thiên giữa 2
chiều. Nếu tính hiệp phương sai giữa 1 chiều với chính nó ta được phương sai của
chiều đó. Nếu tập dữ liệu có 3 chiều x, y, z ta có thể tính hiệp phương sai của từng cặp
chiều (x, y), (y, z), (z, x). Công thức của hiệp phương sai tương tự công thức của
phương sai. Công thức của phương sai được khai triển như sau:
Và công thức của hiệp phương sai:
Từ công thức hiệp phương sai ta thấy, nếu
dương thì X, Y đồng
biến,
âm thì X, Y nghịch biến, nếu bằng 0 thì X, Y độc lập.
21
2.2.1.4 Ma trận hiệp phương sai
Hiệp phương sai đó sự biến thiên giữa 2 chiều, do đó đối với tập dữ liệu có n
chiều ta có
giá trị hiệp phương sai khác nhau. Và để thuận tiện cho việc
tính toán ta biểu diễn các giá trị này thông qua một ma trận gọi là ma trận hiệp phương
sai. Định nghĩa của ma trận như sau:
Trong đó
là 1 ma trận với n hàng, n cột và Dimx là chiều thứ x. Ví dụ
ma trận hiệp phương sai của 1 tập dữ liệu có 3 chiều x, y, z:
2.2.2 Ma trận đại số
Phần này giới thiệu về 2 khái niệm là nền tảng được sử dụng trong PCA đó là
vectơ riêng (eigenvector) và giá trị riêng (eigenvalue).
Hình 6: Ví dụ về 1 non-eigenvector và 1 eigenvector
22
Hình 7: Ví dụ về 1 eigenvector có tỉ lệ khác vẫn 1 là eigenvector
2.2.3 Eigenvector (Vectơ riêng)
Ta có thể nhân 2 ma trận với điều kiện kích cỡ phù hợp và eigenvector là 1
trường hợp đặc biệt của phép nhân này. Quan sát 2 phép nhân ma trận với vector trên
hình 3.1. Ở ví dụ thứ nhất vectơ kết quả không phải là một bội số của vectơ gốc trong
khi ở ví dụ thứ 2 vectơ kết quả bằng 4 lần vectơ gốc. Ta thấy rằng vectơ
(trong ví dụ 2) biểu diễn 1 mũi tên từ điểm (0, 0) đến điểm (3, 2) và ma trận còn lại
được hiểu là ma trận chuyển đổi. Nếu ta nhân ma trận này về bên trái của vectơ thì
vectơ mới nhận được chính là vectơ cũ bị tịnh tiến đi 1 lượng. Đó là tính biến đổi của
vectơ riêng.
Các tính chất của vectơ riêng:
Chỉ các ma trận vuông (n x n) mới có vectơ riêng.
Không phải mọi ma trận vuông đều có vectơ riêng.
Nếu 1 ma trận vuông (n x n) có vectơ riêng thì sẽ có n vectơ riêng.
Nếu nhân vectơ riêng với 1 số thì kết quả sau khi nhân với ma trận
chuyển đổi, vectơ kết quả vẫn là vectơ ban đầu
Tất cả các vectơ riêng của 1 ma trận đều trực giao với nhau
2.2.4 Eigenvalue (Giá trị riêng)
Giá trị riêng là một khái niệm liên quan chặt chẽ đến vectơ riêng. Thực tế chúng
ta đã thấy 1 giá trị riêng trong hình 3.1. Chú ý trong cả 2 ví dụ trên, số được nhân với 2
vectơ riêng bằng nhau và bằng 4. 4 được gọi là giá trị riêng ứng với 1 vectơ riêng (2
23
Tải về để xem bản đầy đủ
Bạn đang xem 30 trang mẫu của tài liệu "Khóa luận Nghiên cứu các thuật toán nhận dạng cảm xúc khuôn mặt trên ảnh 2D", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
khoa_luan_nghien_cuu_cac_thuat_toan_nhan_dang_cam_xuc_khuon.pdf