Luận án Xử lý anten mảng theo không gian, thời gian trong thông tin vô tuyến di động
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TẬP ĐOÀN BCVT VIỆT NAM
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
-------
NGUYỄN QUANG HƯNG
XỬ LÝ ANTEN MẢNG THEO KHÔNG GIAN-THỜI GIAN
TRONG THÔNG TIN VÔ TUYẾN DI ĐỘNG
LUẬN ÁN TIẾN SỸ KỸ THUẬT
HÀ NỘI - 2006
-i-
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TẬP ĐOÀN BCVT VIỆT NAM
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
-------
NGUYỄN QUANG HƯNG
XỬ LÝ ANTEN MẢNG THEO KHÔNG GIAN-THỜI GIAN
TRONG THÔNG TIN VÔ TUYẾN DI ĐỘNG
Chuyên Ngành: Mạng và kênh thông tin liên lạc
Mã số:2.07.14
LUẬN ÁN TIẾN SỸ KỸ THUẬT
NGƯỜI HƯỚNG DẪN KHOA HỌC:
1. TS. Đặng Đình Lâm
2. TS. Chu Ngọc Anh
HÀ NỘI - 2006
-ii-
Lời Cam Đoan
Tôi xin cam đoan đây là công trình
nghiên cứu của riêng tôi. Các số liệu, kết
quả nêu trong bản luận án là trung thực và
chưa từng được ai công bố ở đâu và trong
bất kỳ công trình nào khác.
Tác giả
Nguyễn Quang Hưng
-iii-
Lời Cảm Ơn!
Tôi xin bày tỏ lời biết ơn sâu sắc tới TS. Đặng Đình Lâm và TS. Chu
Ngọc Anh đã tận tình hướng dẫn trong suốt quá trình làm luận án. Đặc biệt,
sự chỉ bảo tận tình và sự tạo điều kiện thuận lợi trong các hoạt động nghiên
cứu khoa học của TS. Đặng Đình Lâm có ý nghĩa vô cùng to lớn để tôi có thể
hoàn thành được luận án này. Tôi cũng xin cảm ơn PGS. TS. Nguyễn Minh
Dân vì những chỉ dẫn, định hướng quan trọng ngay từ khi xây dựng đề cương
nghiên cứu.
Các kết quả mang tính thực tiễn cao có được là nhờ sự giúp đỡ tạo điều
kiện nghiên cứu tại các phòng thí nghiệm ở Hàn Quốc của TS. Phùng Văn
Vận, TS. Nguyễn Kim Lan, TSKH. Nguyễn Ngọc San. Tôi cũng không thể
không cảm ơn TS. Seung Chan Bang, TS. Byung Han Ryu và các bạn đồng
nghiệp Won Ik Kim, Il Guy Kim tại Phòng thí nghiệm thông tin di động-Viện
nghiên cứu Điện tử Viễn thông Hàn Quốc (ETRI) vì những giúp đỡ quí báu
trong thời gian tôi thực tập tại đây. Xin cảm ơn Won ok Kwon- người bạn
luôn có cảm tình đặc biệt với Việt Nam và vẫn liên tục giữ liên lạc với tôi
trong mấy năm qua qua việc cung cấp tài liệu, trao đổi những thông tin về
những phát triển khoa học công nghệ mới nhất trong lĩnh vực liên quan tại
Viện ETRI.
Cảm ơn TS. Danie van Wyk-Đại học Tổng hợp Nam Phi đã hỗ trợ để tôi
có thể phát triển phần mềm mô phỏng hệ thống W-CDMA từ phiên bản tuân
theo tiêu chuẩn cũ của ông. Bên cạnh đó, sự sẵn sàng trao đổi, giúp đỡ của
GS.TS. Hak Lim Ho- Đại học Tổng hợp Chon-An, Hàn Quốc cũng đã giúp tôi
định hướng một cách rõ ràng hơn trong nghiên cứu.
Cuối cùng, tôi xin cảm ơn bố mẹ, tất cả gia đình, bạn bè, người thân đã
trực tiếp hay gián tiếp giúp đỡ, chia sẻ, động viên tôi rất nhiều để có thể hoàn
thành bản luận án này.
-iv-
Mục Lục
Chữ Viết Tắt..........................................................................................vii
Mục lục Hình vẽ.....................................................................................ix
Mục lục Bảng biểu................................................................................xii
Mở Đầu....................................................................................................1
Chương 1. Tổng quan vấn đề nghiên cứu .............................................4
1.1. Sơ lược về quá trình phát triển kỹ thuật xử lý tín hiệu mảng ...... 4
1.1.1. Sự phát triển của kỹ thuật anten: ...................................................................................4
1.1.2. Tín hiệu trong miền thời gian, không gian....................................................................6
1.2. Xử lý không gian-thời gian trong thông tin di động ...................... 9
1.2.1. Mô hình hệ thống không gian-thời gian........................................................................9
1.2.2. Môi trường thông tin di động ......................................................................................14
1.2.3. Mô hình và đánh giá kênh không gian-thời gian.........................................................21
1.2.4. Ưu, nhược điểm của kỹ thuật xử lý không gian-thời gian...........................................23
1.3. Phân loại anten ................................................................................ 25
1.4. Đặt vấn đề nghiên cứu..................................................................... 27
Chương 2. Kỹ thuật xử lý đối với anten mảng.....................................31
2.1. Kỹ thuật phân tập............................................................................ 31
2.1.1. Kết hợp tỉ lệ cực đại ....................................................................................................36
2.1.2. Tăng ích phân tập ........................................................................................................41
2.1.3. Tăng ích anten .............................................................................................................42
2.1.4. Ảnh hưởng của tương quan nhánh ..............................................................................43
2.2. Kỹ thuật tạo búp sóng..................................................................... 47
2.2.1. Chuyển búp sóng.........................................................................................................47
2.2.2. Tạo búp sóng thích nghi..............................................................................................50
2.2.3. Các thuật toán thích nghi.............................................................................................55
-v-
2.3. Thuật toán tạo búp thích nghi có hỗ trợ của kênh hoa tiêu cho
đường lên DS-CDMA ................................................................................ 59
2.3.1. Anten thông minh cho DS-CDMA..............................................................................59
2.3.2. Mô hình tín hiệu ..........................................................................................................61
2.3.3. Kết hợp theo không gian ở máy thu trạm gốc .............................................................64
2.4. Tổng kết chương.............................................................................. 67
Chương 3. Hiệu quả về dung lượng của anten thông minh đối với hệ
thống GSM ............................................................................................68
3.1. Đánh giá hiệu quả về dung lượng khi sử dụng anten thông minh
chuyển búp sóng......................................................................................... 68
3.2. Kết quả tính số................................................................................. 72
3.2.1. Hiệu quả về dung lượng với hệ thống AMPS ............................................................72
3.2.2. Hiệu quả về dung lượng đối với hệ thống GSM ........................................................74
3.2.3. Đề xuất mẫu tái sử dụng tần số cho mạng GSM ở Việt Nam khi sử dụng anten thông
minh .....................................................................................................................................76
3.3. Ảnh hưởng của pha-đinh và che khuất tới việc tái sử dụng tần số
........................................................................................................... 77
3.3.1. Ảnh hưởng của sự che khuất.......................................................................................82
3.3.2. Các vùng nhiễu............................................................................................................83
3.3.3. Đánh giá ảnh hưởng của các nguồn nhiễu đồng kênh trong thực tế............................85
3.4. Hiệu quả về dung lượng của anten chuyển búp sóng với ảnh
hưởng của che khuất và pha-đinh............................................................ 90
3.5. Tổng kết chương.............................................................................. 94
Chương 4. Phối hợp kỹ thuật tạo búp và phân tập cho hệ thống W-
CDMA....................................................................................................96
4.1. Hệ thống W-CDMA......................................................................... 96
4.1.1. Các đặc tính chủ yếu của W-CDMA...........................................................................97
-vi-
4.1.2. Kênh vật lý đường lên .................................................................................................98
4.1.3. Kênh vật lý đường xuống..........................................................................................100
4.1.4. Môi trường mô phỏng W-CDMA .............................................................................102
4.2. Phối hợp kỹ thuật tạo búp sóng và phân tập cho hệ thống W-
CDMA....................................................................................................... 107
4.2.1. Chỉ tiêu kỹ thuật tạo búp sóng...................................................................................107
4.2.2. Chỉ tiêu kỹ thuật phân tập thu ...................................................................................112
4.2.3. Đề xuất phối hợp kỹ thuật tạo búp và phân tập cho hệ thống W-CDMA .................115
4.3. Kết quả mô phỏng ......................................................................... 117
4.4. Đo kiểm hệ thống thử nghiệm anten thông minh cho W-CDMA
119
4.4.1. Giới thiệu hệ thống thử nghiệm.................................................................................119
4.4.2. Anten mảng thông minh............................................................................................120
4.4.3. Cấu hình hệ thống và điều kiện đo............................................................................122
4.4.4. Kết quả đo kiểm trên hệ thống thử nghiệm ...............................................................129
4.5. Xử lý kết quả đo kiểm và so sánh với kết quả mô phỏng .......... 131
4.6. Tổng kết chương............................................................................ 133
KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN...........................................134
Kết luận..................................................................................................... 134
Hướng phát triển tiếp theo: .................................................................... 135
Bài báo, Công trình đã công bố..........................................................136
Tài liệu tham khảo..............................................................................138
Tiếng Việt.................................................................................................. 138
Tiếng Anh ................................................................................................. 139
-vii-
Chữ Viết Tắt
Tiếng Anh
Tiếng Việt
Tạo búp sóng thích nghi
Hệ thống điện thoại di động AMPS
Tạp Gauss Trắng Cộng
Tỉ lệ Lỗi Bít
ABF
Adaptive beam-forming
Advanced Mobile Phone System
Additive White Gaussian Noise
Bit Error Rate
AMPS
AWGN
BER
BLER
BPSK
cdf
Block Error Rate
Tỉ lệ lỗi khối
Binary Phase Shift Keying
Cumulative Distribution Function
Carrier-to-Interference Ratio
Khoá Chuyển Pha Nhị phân
Hàm Phân bố Tích luỹ
Tỉ số công suất sóng mang trên
nhiễu
CIR
CNR
Carrier-to-Noise Ratio
Diversity
Tỉ số công suất sóng mang trên tạp
Phân tập
DIV
DPCH
DPCCH
DPDCH
DS
Dedicated Physical Channel
Kênh vật lý dành riêng
Dedicated Physical Control Channel Kênh điều khiển vật lý dành riêng
Dedicated Physical Data Channel
Direct Sequence
Kênh dữ liệu vật lý dành riêng
Chuỗi trải phổ trực tiếp
Song công phân tần
FDD
Frequency Division Duplex
Global System for Mobile
Communications
GSM
Hệ thống thông tin di động toàn cầu
GSM
LMS
LOS
MIMO
MRC
pdf
Least Mean Square
Trung bình Bình phương Nhỏ nhất
Nhìn thẳng
Line Of Sight
Multiple-Input Multiple-Output
Maximum Ratio Combiner
probability density function
Radio Frequency
Nhiều đầu vào Nhiều đầu ra
Bộ kết hợp Tỉ lệ Cực đại
Hàm mật độ xác suất
RF
Cao tần / Tần số vô tuyến
Căn Trung bình Bình phương (Căn
quân phương)
rms
Root Mean Square
SIR
Signal-to-Interference Ratio
Tỉ số tín hiệu trên nhiễu
SIRtarget
Signal-to-Interference Ratio Target Tỉ số tín hiệu trên nhiễu đích (được
-viii-
đặt trước trong phép đo)
Tỉ số tín hiệu trên tạp
SNR
Signal-to-Noise Ratio
TCP
Trasmission Control Protocol
Time Division Duplex
Time Division Multiple Access
Time Division Transmit Diversity
User Equipment
Giao thức điều khiển truyền
Song công phân thời
TDD
TDMA
TDTD
UE
Đa truy nhập phân thời
Phân tập phát theo thời gian
Thiết bị đầu cuối
UMTS
Universal Mobile
Hệ thống thông tin di động UMTS
3G sử dụng W-CDMA
CDMA băng rộng
Telecommunications System
Wideband Code Division Multiple
Access
W-CDMA
-ix-
Mục lục Hình vẽ
Hình
Trang
Hình 1.1. Tín hiệu trong không gian
8
Hình 1.2. Mô hình hệ thống thông tin với N phần tử phát và M phần tử
thu trong môi trường tán xạ.
11
14
Hình 1.3. Phân loại kỹ thuật xử lý không gian-thời gian và anten thông
minh
Hình 1.4. Phân loại anten thông minh
27
34
40
Hình 2.1. Anten mảng phân tập M phần tử
Hình 2.2. Hàm phân bố tích luỹ của γs so với γs/Г cho kỹ thuật kết hợp tỉ
lệ cực đại.
Hình 2.3. BER so với ‹γ› = MГ khi M thay đổi
42
45
46
Hình 2.4. Hai phần tử với các tín hiệu tương quan
Hình 2.5. Ảnh hưởng của tương quan nhánh lên phân bố công suất đầu ra
ở bộ kết hợp tỉ lệ cực đại phân tập kép.
Hình 2.6. BER so với ‹γ› (dB) của bộ kết hợp tỉ lệ cực đại 2 nhánh có pha-
đinh tương quan
47
Hình 2.7. Anten mảng thích nghi
53
69
73
Hình 3.1. Mẫu tái sử dụng tần số trong thông tin di động
Hình 3.2. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
AMPS có băng thông 12,5 MHz, hệ số tái sử dụng N=7.
Hình 3.3. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
AMPS có băng thông 12,5 MHz, hệ số tái sử dụng N=4.
Hình 3.4. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
GSM có băng thông 8 MHz, hệ số tái sử dụng N=4.
Hình 3.5. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
GSM có băng thông 12,5 MHz, hệ số tái sử dụng N=4.
74
75
75
-x-
Hình 3.6. Thay đổi CIR khi hệ số tái sử dụng tần số giảm từ 4 xuống 1
(__: N=4, -x-: N=3, -o-: N=1)
76
77
77
80
Hình 3.7. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai
thác GSM có băng thông 8 MHz, hệ số tái sử dụng N=3.
Hình 3.8. Tăng dung lượng bằng anten chuyển búp sóng cho nhà khai thác
GSM có băng thông 12,5 MHz, hệ số tái sử dụng N=3.
Hình 3.9. Vùng có nhiễu và không nhiễu (a) không có pha-đinh (b) có
pha-đinh và che khuất.
Hình 3.10. Xác suất mất liên lạc khi có pha-đinh và che khuất
Hình 3.11. Ranh giới vùng nhiễu với các xác suất nhiễu khác nhau khi có
pha-đinh và che khuất
82
84
Hình 3.12. Xác suất nhiễu đồng kênh, với i cho trước, theo Zd.
Hình 3.13. Chỉ ra một điểm của xác suất rớt cuội gọi với sáu ô đồng kênh
cho m=1,6 và 12 búp và σ d =6 và 12 dB.
89
92
92
94
Hình 3.14. Đồ thị biểu diễn Zd (hình trái) và Ne theo m (hình phải)
(với ζ=0,7, n=4,5, Pout=1%, σd=6dB, qd=22 dB)
Hình 3.15. Hàm hiệu suất phổ tương đối theo số búp sóng
(với ζ=0,7, n=4,5, Pout=1%, σd=6dB, qd=22 dB)
99
102
103
104
105
106
118
Hình 4.1. Cấu trúc khung của kênh DPDCH/DPCCH đường lên
Hình 4.2. Cấu trúc khung của kênh DPCH đường xuống
Hình 4.3. Sơ đồ khối tổng thể đường lên
Hình 4.4. Sơ đồ khối tổng thể đường xuống
Hình 4.5. Giao diện chính của phần mềm mô phỏng
Hình 4.6. Giao diện để thiết lập các tham số mô phỏng
Hình 4.7. Kết quả mô phỏng đối với phân tập MD = 4 anten, hệ thống tạo
búp MB = 4 anten và hệ thống phối hợp cả phân tập và tạo búp ở môi
trường không nhìn thẳng
120
121
Hình 4.8. Cấu hình hệ thống anten thông minh
Hình 4.9. Anten mảng
-xi-
Hình 4.10. Hệ thống anten thông minh thử nghiệm tại Viện Nghiên cứu
ETRI
123
124
Hình 4.11. Cấu hình hệ thống anten thông minh cho W-CDMA sử dụng
trong đo kiểm
125
Hình 4.12. Cạc kênh của bộ tạo búp sóng thích nghi (hỗ trợ 3 séc-tơ x 8
anten)
128
129
Hình 4.13. Mẫu búp sóng cố định đường xuống
Hình 4.14. Dạng búp sóng đường xuống (chuyển mạch búp sóng) và
đường lên (búp sóng thích nghi)
130
Hình 4.15. Kết quả đo kiểm SNR trên Testbed theo giá trị SIRtarget đặt
trước
130
132
Hình 4.16. Kết quả đo kiểm BLER cho ABF 8-anten và DIV 2-anten
Hình 4.17. Tỉ lệ lỗi bít BER đo được với ABF 8-anten và DIV 2-anten
-xii-
Mục lục Bảng biểu
Bảng
Trang
97
117
Bảng 4.1. Các chỉ tiêu kỹ thuật chính của W-CDMA
Bảng 4.2. Các tham số đầu vào để đánh giá chỉ tiêu BER
-1-
Mở Đầu
Các hệ thống thông tin di động đang phát triển bùng nổ trên thế giới và
cả ở Việt Nam. Trước yêu cầu ngày càng cao của người sử dụng dịch vụ
thông tin di động về chất lượng, dung lượng và tính đa dạng của dịch vụ và
đặc biệt là các dịch vụ truyền dữ liệu tốc độ cao và đa phương tiện, việc
nghiên cứu, ứng dụng các công nghệ và kỹ thuật tiên tiến đáp ứng nhu cầu
này luôn là một đòi hỏi cấp thiết.
Một trong số các kỹ thuật để có thể giúp cải thiện đáng kể chỉ tiêu và
dụng lượng của hệ thống đang được tập trung nghiên cứu trên thế giới trong
thời gian gần đây là kỹ thuật xử lý không gian-thời gian. Kỹ thuật này cho
phép sử dụng tối đa hiệu quả phổ tần cho hệ thống thông tin vô tuyến nói
chung và hệ thống thông tin di động tổ ong nói riêng. Nhờ sử dụng nhiều
phần tử anten, kỹ thuật này cho phép tối ưu hoá quá trình thu hoặc phát tín
hiệu bằng cách xử lý theo cả hai miền không gian và miền thời gian tại máy
thu phát.[16,17,19, 28, 36]
Việc tiếp tục nghiên cứu phát triển kỹ thuật này để tiến tới có được các
sản phẩm hữu dụng có chỉ tiêu chất lượng cao, đồng thời phù hợp với khả
năng xử lý, tính toán của các thiết bị hiện có cũng như ứng dụng nó vào trong
các hệ thống thông tin di động hiện có một cách hiệu quả thực sự là vấn đề
cấp thiết. Việc thực hiện tốt những nghiên cứu này sẽ mang lại hiệu quả rất to
lớn về dung lượng cũng như hiện thực hoá khả năng truyền dữ liệu tốc độ cao
cho các hệ thống thông tin di động như GSM hay CDMA hiện tại cũng như
các hệ thống thông tin di động thế hệ mới.
Mục tiêu của luận án là nghiên cứu kỹ thuật xử lý không-gian thời gian
bằng anten thông minh cho thông tin di động với các trường hợp cụ thể anten
thông minh cho mạng GSM ở Việt Nam và các hệ thống CDMA.
-2-
Đối tượng và phạm vi nghiên cứu của luận án là tập trung giải quyết
những vấn đề sau:
- Nghiên cứu thuật toán tạo búp thích nghi có độ phức tạp tính toán thấp
nhưng tốc độ hội tụ cao để phù hợp với khả năng của thiết bị thực tế.
- Đánh giá hiệu quả của việc sử dụng anten thông minh trong hệ thống GSM
có tính đến các điều kiện cụ thể của hệ thống GSM ở Việt Nam để đề xuất
phương án ứng dụng, triển khai nhằm sử dụng tài nguyên một cách hiệu
quả, có xem xét, đánh giá ảnh hưởng của pha-đinh và che khuất.
- Nghiên cứu kỹ thuật nâng cao chỉ tiêu cho hệ thống anten thông minh cho
W-CDMA, hệ thống thông tin di động thế hệ 3 IMT-2000.
Phương pháp nghiên cứu được thực hiện là nghiên cứu lý thuyết kết hợp
với mô phỏng bằng chương trình máy tính để đánh giá kết quả: Với hệ thống
GSM, có tính đến các tham số và điều kiện đặc thù của mạng lưới hiện đang
triển khai ở Việt Nam; Với đề xuất cho hệ thống W-CDMA, kết quả đo kiểm
thực hiện trên hệ thống thử nghiệm được sử dụng để đánh giá độ tin cậy.
Nội dung luận án bao gồm 4 Chương. Sau phần Mở đầu, Chương 1 trình
bày tổng quan về kỹ thuật xử lý mảng theo không gian-thời gian và đặt vấn đề
nghiên cứu. Chương 2 đi sâu vào phân tích các anten mảng nhiều phần tử
được sử dụng trong thông tin di động với hai kỹ thuật phân tập và tạo búp.
Chương này cũng đã đề xuất sử dụng một thuật toán tạo búp thích nghi kết
hợp cả kênh hoa tiêu và lưu lượng cho hệ thống CDMA trải phổ trực tiếp.
Chương 3 đánh giá hiệu quả của việc sử dụng anten thông minh trong các hệ
thống thông tin di động tổ ong, đề xuất sử dụng cho hệ thống GSM ở Việt
Nam có xem xét đến ảnh hưởng của pha-đinh và che khuất. Trên cơ sở nhận
xét về những hạn chế của hệ thống anten thông minh thử nghiệm cho W-
CDMA, qua phân tích các đặc tính của kỹ thuật phân tập và tạo búp trong môi
trường pha-đinh và nhiễu đa truy nhập, Chương 4 đã đề xuất sử dụng kỹ
-3-
thuật phối hợp cho chép đạt được ưu điểm của cả hai kỹ thuật phân tập và tạo
búp cho hệ thống W-CDMA. Kết quả đo kiểm được thực hiện trên hệ thống
anten thông minh thử nghiệm cho W-CDMA tại Viện nghiên cứu Điện tử
Viễn thông Hàn Quốc (ETRI) để đánh giá độ tin cậy của phương án đề xuất.
Cuối cùng là phần kết luận và hướng phát triển tập trung vào những kết quả
mới đạt được của luận án.
-4-
Chương 1. Tổng quan vấn đề nghiên cứu
1.1. Sơ lược về quá trình phát triển kỹ thuật xử lý tín hiệu mảng
1.1.1. Sự phát triển của kỹ thuật anten:
Sóng vô tuyến được phát minh ra vào năm 1861 khi Maxell (Đại học
Hoàng Gia Luân đôn) đưa ra lý thuyết sóng điện từ. Hertz (Đại học
Karlsruhe) đã chứng minh sự tồn tại của sóng này bằng thực nghiệm vào năm
1887 bằng sóng đứng (tĩnh). Năm 1890 Branly (Paris) đã xây dựng một “bộ
nhất quán” có thể phát hiện sự có mặt của sóng điện từ bằng một cái chai thuỷ
tinh chứa kim loại. Bộ nhất quán này sau đó được tiếp tục phát triển bởi
Lodge (Anh). Mùa hè 1895, Marconi đã sử dụng máy phát của Hertz, bộ nhất
quán của Lodge và lắp thêm anten để tạo ra một máy phát vô tuyến đầu tiên...
Ứng dụng dân dụng đầu tiên của kỹ thuật vô tuyến là hệ thống điện thoại
vô tuyến 2MHz vào năm 1921 trong ngành Cảnh sát. Những hệ thông được
phát triển tiếp sau đó: FM (Armstrong-1933); Hệ thống thông tin của Bell ở
tần số 150MHz, hệ thống IMTS sử dụng FM của AT&T (1946); Khái niệm
celllular (mạng thông tin di động tổ ong) (Phòng thí nghiệm Bell-1947); Hệ
thống AMPS (1970); Vào những năm 1990s: các hệ thống thông tin đi tổ ong
GSM, IS-136 (TDMA), CDMA IS-95, 3G… ra đời và phát triển một cách
mạnh mẽ [34,36]. Kỹ thuật anten được sử dụng cho các hệ thống thông tin vô
tuyến cũng có sự phát triển như sau:
- 1880- tới những năm1890: Hertz, Marconi, Popov đã thiết kế được các
anten có tần số hoạt động và băng thông tốt hơn .
- Những năm 1900: anten định hướng được sử dụng đã cho phép liên lạc
qua biển Atlantic
- 1905: sử dụng nhiều anten cho phân tập thu.
-5-
- Thập kỷ 1920: Dàn anten Yagi-Uda được phát minh đã đem lại tăng ích và
băng thông tốt hơn.
- Chiến tranh thế giới thứ 2: Dàn anten được sử dụng cho rađa
- Thập kỷ 1970: Ứng dụng xử lý tín hiệu thích nghi ở máy thu vô tuyến để
cải thiện phân tập thu và triệt nhiễu bằng các bộ xử lý tín hiệu số trong
quân sự [29]. Việc sử dụng anten nhiều phần tử ở máy thu trong thông tin
vô tuyến mở ra một chiều mới trong xử lý tín hiệu (chiều không gian), cho
phép cải thiện chỉ tiêu hệ thống. Tuy nhiên, đến trước những năm 1990,
vấn đề được phát triển chủ yếu với anten mảng mới chỉ là kỹ thuật xử lý
riêng theo miền không gian (vd: xác định hướng tới) [16].
- Thập kỷ 1990: Kỹ thuật thu không gian-thời gian (kết hợp cả miền không
gian và thời gian) [29, 38]
+ 1996: Anten nhiều phần tử được sử dụng ở trạm gốc để hỗ trợ nhiều
người dùng trên cùng kênh
+ 1994: Đề xuất kỹ thuật tăng dung lượng kênh vô tuyến bằng cách sử
dụng anten nhiều phần tử ở cả máy phát và máy thu. Ý tưởng này tiếp
tục được phát triển 1995, 1996, 1998 -> bắt đầu một cuộc cách mạng về
lý thuyết truyền thông [25, 28].
- Từ những năm 2000: Kỹ thuật thu-phát không gian-thời gian được tập trung
nghiên cứu và phát triển [19, 20]
Có thể thấy rằng, kỹ thuật xử lý không gian-thời gian với mảng (dàn)
anten nhiều phần tử ở nhiều cấp độ phức tạp khác nhau đã được ứng dụng
trong quân sự từ khá lâu, nhưng do tính chất thay đổi liên tục của môi trường
truyền sóng thông tin di động trong khi khả năng xử lý theo thời gian thực của
máy thu phát còn nhiều hạn chế mà kỹ thuật này mới thực sự được nghiên cứu
ứng dụng trong các hệ thống thông tin di động trong thời gian gần đây [17,
29, 36, 38, 55]. Nhờ sử dụng nhiều phần tử anten kỹ thuật này cho phép tối ưu
-6-
hoá quá trình thu hoặc phát tín hiệu bằng cách dùng cả kỹ thuật xử lý tín hiệu
theo miền không gian và theo miền thời gian tại máy thu phát, nhờ đó cho
phép sử dụng tối đa hiệu quả phổ tần của mạng thông tin tổ ong [19].
1.1.2. Tín hiệu trong miền thời gian, không gian
1.1.2.1. Biểu diễn tín hiệu theo thời gian
Tín hiệu thực s(t) có biến đổi Fourier là S(f). Phép biến đổi Fourier này
thoả mãn biểu thức đối xứng sau:
S(f) = SH(-f)
(1.1)
Nếu nói tín hiệu là thực, nghĩa là ta chỉ xét các tần số dương. Gọi z(t) là
đường bao phức của tín hiệu thực s(t), và Z(f) là biến đổi Fourier của z(t)[16].
Đường bao phức cho tần số fc nào đó (tần số sóng mang) được xác định trong
miền Fourier là:
Z(f-fc) = 2u(f)S(f)
(1.2)
1 f ≥ 0
0 f < 0
trong đó hàm bước đơn vị được định nghĩa là: u( f ) =
Tín hiệu s(t) là thực và có phổ bằng:
1
1
S( f ) = Z( f − fc ) + Z H (− f − fc )
(1.3)
2
2
Tín hiệu thực s(t) có thể viết là:
z(t)ej2πf t
c
s(t) = Re
(1.4)
(1.5)
(1.6)
Ký hiệu phần thực và phần ảo của z(t) tương ứng là x(t) và y(t),
z(t) = x(t) + jy(t)
Kết hợp với phương trình (1.4) ta có:
s(t) = x(t)cos2πfct - y(t)sin2πfct
1.1.2.2. Biểu diễn tín hiệu theo không gian-thời gian
Tín hiệu có thêm chiều không gian (không gian-thời gian) được biểu diễn
[27, 38]:
-7-
s(t,x,y,z) = s(t,r)
(1.7)
trong đó r biểu diễn 3 biến không gian (x,y,z)
Trong hệ toạ độ cầu:
x = rsinφcosθ, y = rsinφsinθ, z = rcosθ,
r = x2 + y2 + z2 ,
x
-1
θ=cos
(1.8)
2
2
x + y
z
-1
φ=cos
2
2
2
x + y + z
z
φ
y
θ
x
Hình 1.1. Tín hiệu trong không gian
Với hệ có m phần tử anten: tín hiệu theo không gian-thời gian có thể
viết bằng tổng các tính hiệu thành phần như sau:
m
s(t,r)= s(t,r )
(1.9)
∑
k
k=1
1.1.2.3. Các kỹ thuật xử lý tín hiệu
Với những biểu diễn tín hiệu như trình bày ở trên rõ ràng là ngoài kỹ
thuật xử lý tín hiệu theo thời gian kinh điển, tín hiệu có thể được xử lý theo
chiều không gian, hoặc cả không gian và thời gian. [16]
Kỹ thuật xử lý chỉ theo miền không gian được dùng để đánh giá tín hiệu,
ví dụ như các đáp ứng máy thu và tần số theo không gian, hướng tới (phương
pháp hợp lý cực đại - ML (1964), phân loại nhiều tín hiệu - MUSIC (1980),
-8-
Đánh giá các tham số tín hiệu bằng kỹ thuật quay bất biến - ESPRIT (1985)),
séc-tơ hoá vùng phủ trạm gốc (chia thành nhiều vùng phủ có hướng tới khác
nhau) [49]. Các mô hình không gian được sử dụng do những nguyên nhân
chính sau:
- Không biết thông tin về tín hiệu phát. Mô hình không gian áp dụng cho rất
nhiều tín hiệu khác nhau và cho phép đánh giá vết không gian mà thậm chí
không cần biết tính chất thời gian của tín hiệu phát chẳng hạn như: chuỗi
huấn luyện đã biết, hằng số theo khối, chuỗi mã đã biết... Khi đánh giá
được vết không gian, có thể đánh giá được tín hiệu phát. Tức là, nhiều tín
hiệu có thể được đánh giá và phân biệt khi được bù tần số ở máy phát và
máy thu, mà không cần giải điều chế và đồng bộ. Nếu kết hợp được một
mô hình không gian với các đặc trưng thời gian thì ta có thể cải thiện được
việc đánh giá kênh và vết không gian nói trên.
- Bằng mô hình không gian, ta có thể tính toán được các tham số vật lý của
đường truyền. Những tham số xác định được qua đường lên (vd: vị trí
người sử dụng) có thể được sử dụng cho đường xuống và các phần khác
của hệ thống. Ví dụ: ở chế độ song công theo tần số - FDD (đường lên và
đường xuống sử dụng tần số khác nhau), vị trí của máy phát là tham số
không phụ thuộc vào tần số, nếu vị trí này được xác định nhờ quan sát ở
đường lên thì đường xuống có thể phát chỉ theo hướng vị trí đó để giảm
thiểu nhiễu.
- Phân tích đường truyền: Bằng cách sử dụng các mô hình không gian dựa
trên số liệu đo kiểm, ta có thể biết thêm về môi trường truyền sóng vô
tuyến để sử dụng cho việc thiết kế các hệ thống vô tuyến khác.
Hạn chế của mô hình không gian trong việc đánh giá tín hiệu là chỉ tiêu
của phương pháp sử dụng mô hình này phụ thuộc hoàn toàn vào độ chính xác
của mô hình, trong khi luôn có sự chênh lệch giữa mô hình và hệ thống thực
-9-
tế và anten mảng phải được định cỡ (điều chỉnh) để mô hình không gian này
đúng với hệ thống thực. Nếu kết hợp được một mô hình không gian với các
đặc trưng thời gian thì việc đánh giá kênh và vết không gian có thể được cải
thiện. Kỹ thuật xử lý tín hiệu được thực hiện theo cả miền không gian và thời
gian được gọi là xử lý không gian-thời gian.
1.2. Xử lý không gian-thời gian trong thông tin di động
1.2.1. Mô hình hệ thống không gian-thời gian
Kỹ thuật xử lý không gian-thời gian cho phép sử dụng tối đa hiệu quả
phổ tần của mạng thông tin tổ ong. Nhờ sử dụng nhiều phần tử anten kỹ thuật
này cho phép tối ưu hoá quá trình thu hoặc phát tín hiệu bằng cách dùng cả kỹ
thuật xử lý tín hiệu theo miền không gian và theo miền thời gian tại máy thu
phát. Các kỹ thuật phổ biến đã biết như anten dẻ quạt (séc-tơ hoá) (xử lý
không gian), phân tập (xử lý không gian-thời gian) và anten mảng tạo búp
sóng (xử lý không gian-thời gian) có thể được xem như những ví dụ điển hình
của kỹ thuật xử lý theo không gian-thời gian. Trong thực tế, tất cả các hệ
thống anten mảng có thể được xem như bộ xử lý không gian-thời gian. Các bộ
xử lý không gian-thời gian tiên tiến hơn bao gồm cả bộ tách đa người sử
dụng, mã hóa không gian-thời gian,… sẽ tạo thành một hệ đầy đủ về kỹ thuật
xử lý không gian-thời gian.
Để đơn giản hoá việc phân tích hệ thống xử lý không gian-thời gian, ta
cần có một mô hình cơ bản về hệ thống thông tin bao gồm việc xác định các
đầu vào, đầu ra và kênh của hệ thống. Hệ thống xử lý không gian-thời gian
tổng quát có nhiều phần tử anten được sử dụng tại cả máy phát và máy thu
(mô hình Nhiều đầu vào-Nhiều đầu ra: MIMO). Mô hình này có đặc điểm là
tín hiệu mong muốn có nhiều đầu vào kênh thông tin (các anten phát) cũng
như nhiều đầu ra (các anten thu). Một hệ thống MIMO có thể được xem như
-10-
hệ ghép nhiều kênh con một đầu vào / một đầu ra (SISO), dung lượng kênh
của hệ thống MIMO là tổng hợp dung lượng của các kênh con thành phần.
Dung lượng hệ thống MIMO bị ảnh hưởng bởi sự thay đổi phân bố tăng ích
đặc trưng của các kênh con SISO.
Xét Mô hình hệ thống thông tin với N anten phát và M anten thu hoạt
động tại một tần số không lựa chọn, môi trường pha-đinh Rayleigh, như trong
Hình 1.2.
1
h
1
2
h12
2
3
h1M
hN1
M
N
Rx
Tx
Hình 1.2. Mô hình hệ thống thông tin với N phần tử phát và M phần tử thu
trong môi trường tán xạ.
Đường bao phức của véc-tơ tín hiệu phát là s(t) = [s1(t),s2 (t),...,sN (t)]T và
của tín hiệu thu là r(t) = [r (t),r (t),...,rM (t)]T , trong đó chỉ số T là toán tử chuyển
1
2
vị; Biến thời gian t được giả thiết là rời rạc; Không phụ thuộc vào giá trị N,
tổng công suất máy phát là hằng số Pt. Giả sử véc-tơ tín hiệu phát bao gồm N
thành phần công suất bằng nhau, độc lập thống kê sao cho
ET [s(t)sH (t)] = (P / N)IN , trong đó IN là ma trận đơn vị N × N và ET(.) là kỳ
t
vọng trên toàn bộ thời gian xét nhỏ hơn nhiều lần so với nghịch đảo của tốc
độ pha-đinh.
-11-
Giả thiết công suất của các phần tử phát là bằng nhau bởi vì máy phát
không bị ảnh hưởng bởi các tính năng biến đổi của kênh vô tuyến và các phần
tử anten được xem là giống hệt nhau; Công suất trung bình tại đầu ra của mỗi
phần tử là Pr ; Tín hiệu nhận được còn bao gồm véc-tơ tạp Gauss trắng cộng
AWGN, v(t), với các thành phần độc lập thống kê có công suất là σ 2 .
Tỉ số công suất sóng mang trên tạp (CNR) tại mỗi nhánh là Γ = P /σ 2 ,
r
phụ thuộc vào M. Ma trận đáp ứng xung kênh g(t) có M hàng và N cột. Biến
đổi Fourier của g(t) là G(f). Với giả thiết băng hẹp, các phần tử của G(f) là
hằng số trên toàn băng đang xét, đại lượng f có thể được loại ra. Ngoại trừ
g(0), g(t) là ma trận '0'. Ma trận đáp ứng xung kênh chuẩn hoá là h(t) với biến
đổi Fourier là H, với sự chuẩn hoá theo
P G = P H sao cho
r
t
g(t) = P / P h(t). Chú ý rằng tỉ số Pr / Pt là hệ số suy hao trường do suy hao
r
t
đường trong không gian tự do. Ma trận hàm truyền của kênh được chuẩn hoá
2
sao cho < Hmn >= 1, trong đó dấu ngoặc đơn là toán tử kỳ vọng theo thời
gian, tỉ lệ nghịch với tốc độ pha-đinh.
Ma trận H được giả thiết là được đo tại máy thu. Do đó, trong hầu hết
trường hợp, máy phát không thể biết trước được ma trận kênh, trừ khi kênh vô
tuyến có tính chất thuận nghịch - các đặc tính ở đường xuống và đường lên là
tương tự nhau như trong trường hợp hệ thống song công theo thời gian
(TDD), tần số đường lên và đường xuống là giống nhau.
Hệ thống MIMO tổng quát thường vẫn chưa được sử dụng trong thực tế,
mà người ta thường xét một số cấu hình khác sử dụng một anten tại máy di
động và nhiều anten tại trạm gốc. Các mô hình này có thể được sử dụng cho
trường hợp một người dùng hoặc nhiều người dùng. Trạm gốc có thể sử dụng
kỹ thuật tạo búp hoặc phân tập. Tại máy phát, dữ liệu người dùng có thể được
mã hoá sử dụng kỹ thuật mã hoá không gian-thời gian, trước khi điều chế và
-12-
được phát qua anten MT. Khi xem xét máy phát tại đầu cuối di động, số luồng
dữ liệu bằng 1, trong đó số luồng dữ liệu được mã hoá và được ghép vào
anten phát và K là số người sử dụng tại trạm gốc.
Máy thu của người sử dụng thứ k sẽ phải khôi phục được tín hiệu gốc từ
một hỗn hợp gồm: tín hiệu mong muốn, tạp AWGN và nhiễu đa truy nhập.
Giải pháp sử dụng anten nhiều phần tử tại cả máy thu và máy phát cho phép
khôi phục dữ liệu phát tốt hơn. Hiện tại, các vấn đề nghiên cứu về xử lý ở
máy thu hầu hết được tập trung vào các thuật toán tối ưu hoặc trong miền thời
gian hoặc trong miền mã.
Việc đưa thêm miền không gian vào mạng thông tin di động tổ ong
thông qua việc sử dụng hệ thống anten nhiều phân tử tạo ra nhiều khả năng
mới trong việc phát triển các thuật toán cho máy thu. Đặc biệt, việc dùng
anten nhiều phần tử tại cả máy phát và máy thu cho phép cải thiện quá trình
tách tín hiệu của người sử dụng. Nhờ kỹ thuật không gian-thời gian, mức
nhiễu đa truy nhập và pha-đinh tại máy thu sẽ được giảm xuống đáng kể, do
đó sẽ làm tăng dung lượng của toàn hệ thống.
Như vậy, hệ thống xử lý không gian - thời gian có thể cải thiện chất
lượng kênh truyền theo hai cách: cách thứ nhất là sử dụng phân tập trong hệ
thống để tối thiểu ảnh hưởng của pha-đinh đối với tín hiệu thu được; cách thứ
hai là làm thay đổi thích nghi giản đồ phương hướng của hệ thống anten để
giảm thiểu tổng mức nhiễu đa truy nhập tại máy thu. Năng lực xử lý không
gian - thời gian dựa trên kỹ thuật tạo búp sóng và phân tập được kết hợp trong
việc thiết kế toàn bộ hệ thống. Do vậy, khái niệm xử lý không gian - thời gian
được hiểu như sau:
• Xử lý không gian - thời gian là kỹ thuật giảm thiểu pha-đinh và nhiễu đa
truy nhập (MAI) thông qua việc sử dụng tích hợp anten nhiều phần tử, kỹ
thuật xử lý tín hiệu tiên tiến, cấu trúc máy thu tiên tiến và sửa lỗi trước.
-13-
Xử lý không gian-thời gian:
Giảm thiểu pha-đinh và MAI
Sửa lỗi
trước (FEC)
Các kỹ thuật xử
lý tín hiệu cao cấp
Cấu trúc máy
thu cao cấp
Anten thông
minh
Chia séc-tơ
Tạo búp
Phân tập
Hình 1.3. Phân loại kỹ thuật xử lý không gian-thời gian và anten thông minh
Như vậy, các kỹ thuật như: lọc không gian để giảm nhiễu (giảm nhiễu
cho hệ thống thông tin di động ở đường xuống bằng cách tập trung năng
lượng phát xạ điện từ theo hướng một hoặc một nhóm người dùng, tránh vùng
không có thuê bao đang hoạt động), thu độ nhậy cao (sử dụng anten mảng
thông minh ở đường lên để tập trung búp sóng anten vào một người dùng, làm
tăng tăng ích anten ở hướng có người dùng và triệt tín hiệu từ thuê bao gây
nhiễu), đa truy nhập theo không gian… là các dạng khác nhau của xử lý
không gian - thời gian. Trong đó, kỹ thuật xử lý không gian - thời gian được
sử dụng theo các cách khác nhau để giảm pha-đinh và nhiễu đa truy nhập.
Khái niệm Anten thông minh có thể được hiểu như sau:
•
Anten thông minh là sự kết hợp của anten với các thuật toán xử lý tín
hiệu để tạo ra một hệ thống anten có các tính năng linh hoạt.
Vi dụ, các tính năng linh hoạt này có thể là một giản đồ phương hướng có
thể thay đổi theo sự chuyển động của thuê bao.
Về cơ bản, anten thông minh được sử dụng để chia nhỏ hơn vùng phủ
hình dẻ quạt, mỗi vùng phủ dẻ quạt sẽ được phủ sóng bằng nhiều búp sóng kế
-14-
tiếp nhau do anten mảng tạo ra. Số búp sóng trong mỗi vùng phủ dẻ quạt phụ
thuộc vào cấu trúc anten mảng.[19, 28]
Việc tăng tính định hướng của búp sóng có thể làm tăng dung lượng
(thường được áp dụng trong thành phố) và mở rộng vùng phủ sóng (áp dụng
cho vùng nông thôn). Máy đầu cuối di động có thể giảm công suất phát do
tăng ích của anten trạm gốc lớn hơn, nhờ đó kéo dài thời gian sử dụng của
pin.
Như vậy, ta thấy rằng mục đích chính của kỹ thuật không gian - thời gian
cho hệ thống thông tin di động vẫn là đảm bảo một mức chất lượng nhất định
bằng cách tăng tối đa tỷ lệ tín hiệu trên tạp âm và nhiễu (SINR) cho mỗi
người dùng trong hệ thống. Một anten mảng bao gồm MB phần tử có thể tạo ra
tăng ích công suất gấp MB lần đối với tạp âm trắng, nhưng việc triệt nhiễu từ
những người dùng khác trong mạng thông tin di tổ ong thì còn phụ thuộc vào
dạng của tín hiệu nhận được.
1.2.2. Môi trường thông tin di động
Ưu điểm mà xử lý không gian-thời gian có thể đạt được phụ thuộc vào
nhiều tham số, trong đó có một số tham số phụ thuộc vào môi trường. Do đó
chúng phải được mô hình hoá một cách chính xác khi phân tích hệ thống. Hai
tham số ảnh hưởng quan trọng là: đường truyền sóng của tín hiệu, và pha-
đinh thời gian. Ngoài ra, còn có một số tham số về: môi trường tán xạ và phân
bố thuê bao theo góc… có thể tham khảo thêm trong [36]. Những tham số này
ảnh hưởng lớn tới chỉ tiêu hệ thống và cần được đặc biệt chú ý khi thiết kế hệ
thống tối ưu.
1.2.2.1. Đường truyền sóng
Mô hình đường truyền sóng cần tính đến các ảnh hưởng sau:
• Suy hao đường truyền;
-15-
• Sự che khuất: môi trường tán xạ cụ thể (vd: cây cối, toà nhà) trên đường
truyền ở một khoảng cách nào đó sẽ khác nhau đối với các đường truyền
khác nhau, gây ra những sai lệch so với mô hình suy hao đường truyền
chuẩn. Một số đường truyền sóng có suy hao lớn, trong khi các đường
truyền khác bị che khuất ít hơn và có cường độ tín hiệu lớn hơn. Hiện
tượng này được gọi là che khuất hoặc pha-đinh chậm và có thống kê pha-
đinh log-chuẩn);
• Số lượng thành phần đa đường và phân bố các đường bao của chúng (Do
môi trường tán xạ cục bộ xung quanh máy di động và/hoặc trạm gốc quyết
định);
• Pha-đinh thời gian (đặc tính quan trọng trong môi trường vô tuyến di
động);
• Sự tương quan: các thành phần đa đường được tạo ra bởi một vùng tán xạ
cục bộ (nhỏ) có tương quan khá cao - phụ thuộc chủ yếu vào các yếu tố
liên quan tới phân bố không gian của các phần tử tán xạ cục bộ. Tương
quan là khái niệm rất quan trọng trong hệ thống không gian-thời gian do
nó ảnh hưởng tới giản đồ phương hướng anten trong kỹ thuật tạo búp sóng
và độ lớn tăng ích phân tập có thể đạt được trong hệ thống.
Các đặc tính truyền sóng trên có ảnh hưởng lớn đến chỉ tiêu của thuật
toán tạo búp sóng được dùng. Hầu hết các thuật toán tạo búp sóng đều dự trên
giả thiết rằng các tín hiệu tới mỗi phần tử của mảng có tương quan lớn với
nhau ( ρij >0,8).
Suy hao đường truyền
Nếu không xác định được các đặc tính truyền sóng của một kênh vô
tuyến, người ta thường tính suy hao tín hiệu theo khoảng cách bằng suy hao
-16-
trong môi trường không gian tự do - mô hình coi vùng giữa anten phát và
anten thu là vùng không có bất kỳ vật hấp thụ hoặc phản xạ năng lượng sóng
vô tuyến nào. Trong vùng này, khí quyển được xem như môi trường không
hấp thụ và đồng nhất hoàn toàn. Ngoài ra, trái đất được xem như ở rất xa so
với tín hiệu truyền sóng. Trong mô hình không gian tự do, suy hao của năng
lượng sóng vô tuyến tỉ lệ nghịch với bình phương khoảng cách. Công suất thu
được biểu diễn theo công suất phát với hệ số suy hao Ls(R) - được gọi là hệ số
suy hao đường truyền hoặc suy hao không gian tự do. Trong các ứng dụng
thông tin vô tuyến di động, suy hao đường truyền trung bình, Ls (R) , là một
hàm phụ thuộc khoảng cách R giữa máy di động và trạm gốc, tương ứng với
nl lần tỉ số R trên khoảng cách tham chiếu r0. Tức là:
n
l
R
r0
Ls (R) =
(1.10)
Khi có hiện tượng dẫn sóng mạnh như khi tín hiệu truyền dọc theo các
đường phố ở đô thị, thì nl có thể nhỏ hơn 2. Khi xuất hiện các vật che khuất, nl
sẽ lớn hơn và nằm trong khoảng giá trị từ 2,5 đến 5 [36, 51]. Các đo đạc thực
nghiệm cho thấy rằng với bất kỳ giá trị nào của R, tổng suy hao đường Lx(R)
là một biến ngẫu nhiên có phân bố log-chuẩn xung quanh giá trị trung bình
phụ thuộc khoảng cách Ls (R) . Do đó, suy hao tổng Lx(R) có thể được biểu
diễn bởi Ls (R) cộng với một biến ngẫu nhiên Xσ , như sau (tính bằng dB):
[62]
Lx
(
R
)
= Ls
r0
)
+10nl log10
R / r0 + Xσ
)
(1.11)
Trong đó Xσ là biến ngẫu nhiên Gauss có trung bình bằng không (tính bằng
dB) và phụ thuộc vào khoảng cách và vị trí trạm gốc. Việc chọn lựa giá trị
cho Xσ thường dựa trên đo đạc thực tế và phụ thuộc vào loại môi trường
-17-
thông tin tổ ong: macro-ô (ô lớn), micro-ô (ô nhỏ), hoặc picro-ô (ô rất nhỏ),
và các tham số kênh khác. Giá trị thường được sử dụng nằm trong khoảng từ
6 đến 10 dB.
1.2.2.2. Pha-đinh và ảnh hưởng đến vùng phủ sóng
Pha-đinh có thể được chia thành hai loại pha-đinh chậm và/hoặc pha-
đinh nhanh (có tài liệu dùng là pha-đinh large-scale, và small-scale). Pha-đinh
chậm (hay che khuất) có suy hao như được trình bày trong mục 1.2.2.1. Pha-
đinh nhanh biểu hiện hai đặc tính là méo tín hiệu (trải trễ tín hiệu) và sự biến
đổi theo thời gian của kênh. Do sự chuyển động giữa máy phát và máy thu,
kênh truyền sẽ biến đổi theo thời gian khi thay đổi đường truyền sóng. Tốc độ
thay đổi của các điều kiện truyền sóng này được xem như tốc độ biến thiên
nhanh của pha-đinh. Pha-đinh nhanh thường được mô tả thống kê bằng phân
bố Rayleigh, Rice [64] hoặc Nakagami-m [65]. Việc lựa chọn mô hình phù
hợp chủ yếu phụ thuộc vào môi trường hoạt động của hệ thống thông tin. Nếu
số các đường phản xạ đa đường lớn và không có thành phần tín hiệu trong
tầm nhìn thẳng, đường bao của tín hiệu thu thường được mô tả thống kê bằng
hàm mật độ xác suất Rayleigh. Khi có sự xuất hiện của thành phần tín hiệu
không pha-đinh với cường độ mạnh, ví dụ như tín hiệu đến từ đường truyền
trong tầm nhìn thẳng, đường bao pha-đinh nhanh đuợc mô tả bằng hàm mật
độ xác suất Rice. Ngoài các đặc tính toán học đặc biệt của mô hình pha-đinh
Nakagami-m, người ta thấy rằng mô hình này có thể mô tả chính xác đặc tính
pha-đinh của các tín hiệu đa đường và các quá trình tán xạ vật lý khác. [66]
Kích thước của một ô trong hệ thống thông tin di động tổ ong có thể
được xác định bằng tỉ lệ phần trăm vùng nằm trong đường tròn bán kính R mà
trong đó cường độ tín hiệu thu được từ trạm gốc lớn hơn một ngưỡng cụ thể
nào đó. Ta đặt phần vùng có dịch vụ Fu là vùng này (trong đường tròn bán
kính R, cường độ tín hiệu thu được ở anten máy di động vượt quá ngưỡng xo
Tải về để xem bản đầy đủ
Bạn đang xem 30 trang mẫu của tài liệu "Luận án Xử lý anten mảng theo không gian, thời gian trong thông tin vô tuyến di động", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- luan_an_xu_ly_anten_mang_theo_khong_gian_thoi_gian_trong_tho.pdf